Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Brice Kauffmann, ${ }^{\text {a }}$ Claude

Didierjean, ${ }^{\text {a }}{ }^{*}$ Nicolas Brosse, ${ }^{\text {b }}$ Brigitte Jamart-Grégoire ${ }^{b}$ and André Aubry ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B), UMR-CNRS n ${ }^{\circ}$ 7036, Groupe Biocristallographie, Université Henri Poincaré, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre lès Nancy Cedex, France, and
${ }^{\text {b }}$ Laboratoire de Chimie Physique
Macromoléculaire, UMR-CNRS-INPL $n^{\circ} 7568$, ENSIC-INPL, BP 451, 54001 Nancy Cedex, France

Correspondence e-mail:
claude.didierjean@lcm3b.uhp-nancy.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.129$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(tert-Butyloxycarbonylamino)phthalimide

An X-ray crystallographic study reveals a short $\mathrm{N}-\mathrm{N}$ bond in the title compound, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$. The molecular packing is mainly driven by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds, leading to $C(5)$ infinite chains, and by $\pi-\pi$ stacking interactions between the phthalimide ring systems.

Comment

As part of our effort to develop new synthetic approaches for the preparation of hydrazine derivatives, we had previously demonstrated that N-tert-butyloxycarbonylaminophthalimide, (I) [easily prepared from tert-butylcarbazate and phthalic anhydride (Brosse et al., 2000)], can be used for the synthesis of protected alkylhydrazines (II). As a result, we showed that (I) can be considered as a hydrazine bearing three electronwithdrawing groups, two of which are incorporated into the phthaloyl moiety. This structural arrangement enabled us to use this hydrazine derivative as an acidic partner in phase transfer catalysis (PTC) procedures (Brosse et al., 2003) and, for the first time, in the Mitsunobu protocol (Brosse et al., 2000). This alkylation method was efficient in obtaining, in two steps, N-alkylated hydrazines and enantiomerically pure α-hydrazinoesters (Brosse et al., 2001).

Compound (I) crystallizes in the centrosymmetric monoclinic space group $P 2_{1} / c$. Bond lengths and angles of both phthalimide and urethane groups are consistent with those reported for similar groups (Allen, 2002). The angle between the mean planes defined by the urethane and phthalimide groups is $82.70(6)^{\circ}$, showing that these two groups are nearly perpendicular. A search of the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002) for crystal structures containing the N-aminophthalimide group, yielded only 36

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomnumbering scheme and 25% probability displacement ellipsoids.
hits, and revealed that $\mathrm{N}-\mathrm{N}$ bond lengths range from 1.37 to $1.43 \AA$. The value observed in (I), 1.372 (2) \AA, is in agreement with the results of Loehlin (1985), which assumed that the N N bond length is dependent on lone-pair localization. Indeed, the partial electron delocalization from both atoms N1 and N2 results in a short distance.

In the crystal structure, molecules of (I) are linked into infinite chains parallel to b via $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds (Fig. 2 and Table 1) described by the pattern $C(5)$ (Bernstein et al., 1995). The phthalimide rings interact in pairs via $\pi-\pi$ stacking interactions, with a distance between the two ring centroids of 3.637 (1) A. All other intermolecular interactions are van der Waals interactions.

Experimental

The title compound was prepared from tert-butylcarbazate and phthalic anhydride (Brosse et al., 2000), and was crystallized by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=262.26$
Monoclinic, $P 2_{1} / c$
$a=9.7050(6) \AA$
$b=8.5290(4) \AA$
$c=16.3120(10) \AA$
$\beta=95.275(3)^{\circ}$
$V=1344.49(13) \AA^{3}$
$Z=4$
$D_{x}=1.296 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 10577 \quad reflections
> $\theta=3.4-25.4^{\circ}$
> $\mu=0.10 \mathrm{~mm}^{-1}$
> $T=293(2) \mathrm{K}$
> Prism, colourless
> $0.2 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: none
11015 measured reflections
2444 independent reflections
1701 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.129$
$S=1.04$
2444 reflections
173 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0577 P)^{2}\right. \\
& +0.2922 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\mathrm{A}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.13 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.044 \text { (5) }
\end{aligned}
$$

Figure 2
Part of the crystal structure of (I), showing the formation of the $C(5)$ chains along [010]. The intermolecular hydrogen bonds are shown as dashed lines.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: HKL suite (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and WebLab ViewerPro 3.5 (MSI, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The authors thank the Service Commun de Diffraction X sur Monocristaux (Université Henri Poincaré, Nancy I) for providing access to crystallographic experimental facilities.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brosse, N., Pinto, M. F., Bodiguel, J. \& Jamart-Grégoire, B. (2001). J. Org. Chem. 66, 2869-2873.
Brosse, N., Pinto, M. F. \& Jamart-Grégoire, B. (2000). J. Org. Chem. 65, 43704374.

Brosse, N., Pinto, M. F. \& Jamart-Grégoire, B. (2003). Eur. J. Org. Chem. 24, 4757-4764.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Loehlin, J. H. (1985). Acta Cryst. C41, 210-212.
MSI (1999). WebLab ViewerPro 3.5. Molecular Simulation Inc., San Diego, USA.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

